
Trading Memory for Disk Using Parallel Access
to Fast InfiniBand Disk Arrays for Large
Computational Chemistry Applications

Kyle Schochenmaier, Troy Benjegerdes and Brett M. Bode
Scalable Computing Laboratory

Ames Laboratory, U.S. DOE
Iowa State University

Outline

Problem Statement

Hardware Configuration

Software Configuration

Software Tools

Results

Conclusions

2

Problem Statement

Our primary application, the GAMESS quantum
chemistry app. has many code paths that are quite
I/O bound writing and especially reading large
temporary storage.

Most HPC systems are moving towards providing
minimal locally attached secondary storage with a
corresponding meager I/O bandwidth.

This is particularly troubling as the number of
CPUs per node is increased.

3

Proposed Solution

Network interconnects have reached the point where
they can potentially deliver access to secondary
storage faster than locally attached storage
subsystems.

This also requires scalable client/server software
capable of delivering very high bandwidth to a single
node while simultaneously scaling to large numbers
of clients.

We have chosen to use PVFS2 on Linux clients
and servers interconnected by InfiniBand.

4

Hardware Configuration

Six storage servers

dual AMD Opteron processors

4 GB RAM

2 Areca PCI-X SATA RAID
controllers

16 250 GB Seagate SATA HDs

Mellanox 4X DDR PCI-
Express InfiniBand adapter (16
Gbps)

5

12x DDR
Mellanox (24) 4x DDR ports

IBM 4x

SDR eHCAmtHCA 4x SDR

mtHCA 4x DDR mtHCA 4x DDR

IBM
12x

eHCA

IBM

12x

eHCA

Figure 1. Hardware Configuration

servers and a set of IBM OpenPower Power5 based
servers as the clients utilizing InfiniBand for the inter-
connect as shown in Figure 1. The storage component
is provided by six dual AMD Opteron based servers.
Each server is configured with 4GB of RAM, two PCI-
X based Areca 8-port SATA RAID controllers and 16
Seagate 250GB SATA disks configured in two hard-
ware RAID5 arrays that are then combined into a sin-
gle RAID0 array in software. The network for the stor-
age servers is provided by a Mellanox 8x PCI-express
based 4X Double Data Rate (DDR) InfiniBand provid-
ing a peak data payload of 16Gbps. The clients are a
set of ten IBM quad-Power5 OpenPower 720 servers
configured with 8 or 16 GB of RAM and a GX pro-
cessor bus attached IBM 12X Single Data Rate (SDR)
Galaxy InfiniBand adapter. In addition, two clients
were configured with 4X SDR PCI-X based Mellanox
InfiniBand adapters. This setup allows us to test clients
running at peak data payloads of 8 Gbps, 16 Gbps, and
24 Gbps and allows varying the server count from 1
to six and the client count from 1 to 10. The nodes
and servers are distributed between two 24 4X DDR
port Mellanox switches. The switches are connected
to each other via a 12X DDR link providing up to
48Gbps of switch to switch bandwidth. For the pur-
poses of this work this should provide an effectively
flat network without switch imposed bandwidth limi-
tations.

3.2 Data and Storage Layout

Utilizing PVFS2 the data storage on the Opteron
based servers was combined into sets of 1, 2, 4 and
6 servers. In each case data is automatically striped
across the number of servers in the virtual file system.
The stripe size was also examined.

4 Software

Our software core is based on the latest develop-
ment version of PVFS2 running on AMD64 and Pow-
erPC64 based Debian Linux. To quantify our perfor-
mance we have used a new version of NetPIPE and the
GAMESS quantum chemistry application. To further
validate these results we have checked them against
the output of the vmstat linux command.

4.1 PVFS2

The core piece of software for our test setup is the
Parallel Virtual File System 2 (PVFS2) [3]. PVFS2
is designed to stripe data storage across multiple in-
dependent servers while providing the appearance of
a single unified file system to the clients. It has been
demonstrated to have quite good scalability in the past
with large numbers of clients and servers. However,
the performance to an individual client has been less of
a focus, in part because the network connection speeds
have imposed an upper limit of about 100MB/sec on
a network file system. With the arrival of InfiniBand
in the past few years the network capability has been
increased from 1-2 Gbps to 8 and now 16-24 Gbps.
Achieving that level of performance requires the di-
rect use of the native verbs interface. Thus, we have
been assisting in the development of an OpenIB [4] na-
tive message layer for PVFS2. While an initial version
of this work was released in the version 1.5 release
of PVFS2 work is still ongoing and significant perfor-
mance improvements were made during the course of
this effort. PVFS2 provides up to three different ap-
plication interfaces. The simplest is provided through
a kernel extension and client process that provides a
normal file system interface to applications. The sec-
ond option is through the use of MPI-IO and the third
is through direct calls to the PVFS2 user land library.
The normal file system interface is obviously the sim-
plest for applications to use, but potentially imposes
additional overhead and limits the ability of the ap-
plication to tune various IO related parameters. The
native libpvfs2 usage is the most invasive, but allows
the most tuning. Thus, for our tests we have chosen to
test a native libpvfs2 implementation and a normal file
system implementation.

2

Hardware Configuration
Eight compute clients

quad Power5 processors

8 or 16 GB RAM

IBM 12X GX processor bus
attached (eHCA) InfiniBand
adapter (24 Gbps)

Interconnect

2 Mellanox 24 port (4X SDR/
DDR) switches

Connected together with a 12X
DDR link (48 Gbps max data
payload)

6

12x DDR
Mellanox (24) 4x DDR ports

IBM 4x

SDR eHCAmtHCA 4x SDR

mtHCA 4x DDR mtHCA 4x DDR

IBM
12x

eHCA

IBM

12x

eHCA

Figure 1. Hardware Configuration

servers and a set of IBM OpenPower Power5 based
servers as the clients utilizing InfiniBand for the inter-
connect as shown in Figure 1. The storage component
is provided by six dual AMD Opteron based servers.
Each server is configured with 4GB of RAM, two PCI-
X based Areca 8-port SATA RAID controllers and 16
Seagate 250GB SATA disks configured in two hard-
ware RAID5 arrays that are then combined into a sin-
gle RAID0 array in software. The network for the stor-
age servers is provided by a Mellanox 8x PCI-express
based 4X Double Data Rate (DDR) InfiniBand provid-
ing a peak data payload of 16Gbps. The clients are a
set of ten IBM quad-Power5 OpenPower 720 servers
configured with 8 or 16 GB of RAM and a GX pro-
cessor bus attached IBM 12X Single Data Rate (SDR)
Galaxy InfiniBand adapter. In addition, two clients
were configured with 4X SDR PCI-X based Mellanox
InfiniBand adapters. This setup allows us to test clients
running at peak data payloads of 8 Gbps, 16 Gbps, and
24 Gbps and allows varying the server count from 1
to six and the client count from 1 to 10. The nodes
and servers are distributed between two 24 4X DDR
port Mellanox switches. The switches are connected
to each other via a 12X DDR link providing up to
48Gbps of switch to switch bandwidth. For the pur-
poses of this work this should provide an effectively
flat network without switch imposed bandwidth limi-
tations.

3.2 Data and Storage Layout

Utilizing PVFS2 the data storage on the Opteron
based servers was combined into sets of 1, 2, 4 and
6 servers. In each case data is automatically striped
across the number of servers in the virtual file system.
The stripe size was also examined.

4 Software

Our software core is based on the latest develop-
ment version of PVFS2 running on AMD64 and Pow-
erPC64 based Debian Linux. To quantify our perfor-
mance we have used a new version of NetPIPE and the
GAMESS quantum chemistry application. To further
validate these results we have checked them against
the output of the vmstat linux command.

4.1 PVFS2

The core piece of software for our test setup is the
Parallel Virtual File System 2 (PVFS2) [3]. PVFS2
is designed to stripe data storage across multiple in-
dependent servers while providing the appearance of
a single unified file system to the clients. It has been
demonstrated to have quite good scalability in the past
with large numbers of clients and servers. However,
the performance to an individual client has been less of
a focus, in part because the network connection speeds
have imposed an upper limit of about 100MB/sec on
a network file system. With the arrival of InfiniBand
in the past few years the network capability has been
increased from 1-2 Gbps to 8 and now 16-24 Gbps.
Achieving that level of performance requires the di-
rect use of the native verbs interface. Thus, we have
been assisting in the development of an OpenIB [4] na-
tive message layer for PVFS2. While an initial version
of this work was released in the version 1.5 release
of PVFS2 work is still ongoing and significant perfor-
mance improvements were made during the course of
this effort. PVFS2 provides up to three different ap-
plication interfaces. The simplest is provided through
a kernel extension and client process that provides a
normal file system interface to applications. The sec-
ond option is through the use of MPI-IO and the third
is through direct calls to the PVFS2 user land library.
The normal file system interface is obviously the sim-
plest for applications to use, but potentially imposes
additional overhead and limits the ability of the ap-
plication to tune various IO related parameters. The
native libpvfs2 usage is the most invasive, but allows
the most tuning. Thus, for our tests we have chosen to
test a native libpvfs2 implementation and a normal file
system implementation.

2

Software Configuration

AMD64 version of Debian Linux on
storage servers

PPC64 version of Debian Linux on
IBM power5 clients

PVFS2 running on OpenIB verbs
natively. Version 1.5.1 ++ (from latest
development tree)

7

12x DDR
Mellanox (24) 4x DDR ports

IBM 4x

SDR eHCAmtHCA 4x SDR

mtHCA 4x DDR mtHCA 4x DDR

IBM
12x

eHCA

IBM

12x

eHCA

Figure 1. Hardware Configuration

servers and a set of IBM OpenPower Power5 based
servers as the clients utilizing InfiniBand for the inter-
connect as shown in Figure 1. The storage component
is provided by six dual AMD Opteron based servers.
Each server is configured with 4GB of RAM, two PCI-
X based Areca 8-port SATA RAID controllers and 16
Seagate 250GB SATA disks configured in two hard-
ware RAID5 arrays that are then combined into a sin-
gle RAID0 array in software. The network for the stor-
age servers is provided by a Mellanox 8x PCI-express
based 4X Double Data Rate (DDR) InfiniBand provid-
ing a peak data payload of 16Gbps. The clients are a
set of ten IBM quad-Power5 OpenPower 720 servers
configured with 8 or 16 GB of RAM and a GX pro-
cessor bus attached IBM 12X Single Data Rate (SDR)
Galaxy InfiniBand adapter. In addition, two clients
were configured with 4X SDR PCI-X based Mellanox
InfiniBand adapters. This setup allows us to test clients
running at peak data payloads of 8 Gbps, 16 Gbps, and
24 Gbps and allows varying the server count from 1
to six and the client count from 1 to 10. The nodes
and servers are distributed between two 24 4X DDR
port Mellanox switches. The switches are connected
to each other via a 12X DDR link providing up to
48Gbps of switch to switch bandwidth. For the pur-
poses of this work this should provide an effectively
flat network without switch imposed bandwidth limi-
tations.

3.2 Data and Storage Layout

Utilizing PVFS2 the data storage on the Opteron
based servers was combined into sets of 1, 2, 4 and
6 servers. In each case data is automatically striped
across the number of servers in the virtual file system.
The stripe size was also examined.

4 Software

Our software core is based on the latest develop-
ment version of PVFS2 running on AMD64 and Pow-
erPC64 based Debian Linux. To quantify our perfor-
mance we have used a new version of NetPIPE and the
GAMESS quantum chemistry application. To further
validate these results we have checked them against
the output of the vmstat linux command.

4.1 PVFS2

The core piece of software for our test setup is the
Parallel Virtual File System 2 (PVFS2) [3]. PVFS2
is designed to stripe data storage across multiple in-
dependent servers while providing the appearance of
a single unified file system to the clients. It has been
demonstrated to have quite good scalability in the past
with large numbers of clients and servers. However,
the performance to an individual client has been less of
a focus, in part because the network connection speeds
have imposed an upper limit of about 100MB/sec on
a network file system. With the arrival of InfiniBand
in the past few years the network capability has been
increased from 1-2 Gbps to 8 and now 16-24 Gbps.
Achieving that level of performance requires the di-
rect use of the native verbs interface. Thus, we have
been assisting in the development of an OpenIB [4] na-
tive message layer for PVFS2. While an initial version
of this work was released in the version 1.5 release
of PVFS2 work is still ongoing and significant perfor-
mance improvements were made during the course of
this effort. PVFS2 provides up to three different ap-
plication interfaces. The simplest is provided through
a kernel extension and client process that provides a
normal file system interface to applications. The sec-
ond option is through the use of MPI-IO and the third
is through direct calls to the PVFS2 user land library.
The normal file system interface is obviously the sim-
plest for applications to use, but potentially imposes
additional overhead and limits the ability of the ap-
plication to tune various IO related parameters. The
native libpvfs2 usage is the most invasive, but allows
the most tuning. Thus, for our tests we have chosen to
test a native libpvfs2 implementation and a normal file
system implementation.

2

NetPIPE

Tool for measuring network bandwidth versus message
size.

New modules to test I/O bandwidth

Can be set to allow testing of file system cache
(reread the same data over and over)

Can also stride through a file to obtain performance
numbers all the way to disk.

8

GAMESS

Our motivating application

Large (750k lines) FORTRAN application

Has many different algorithms including
both direct (~diskless) and conventional
(potentially very large temporary files).

MPI version, but not normally used.

Used the common Hartree-Fock energy
calculation for our tests.

9

Small Test - Rotenone

479 AOs, 104
occupied MOs

Produces 16.2
GB scratch file.

10

Large Test - Taxol

1032 AOs, 226
occupied MOs

Produces 120 GB
scratch file.

11

Base Network Performance
Performance for the
storage servers exceeds 11
Gbps

IBM eHCA performance is
a disappointing 6.2 Gbps.

eHCA has 6 DMA
engines

eHCA can parallelize
multiple streams with
the multiple DMA
engine

12

number of times while molecular wavefunction is op-
timized in an iterative fashion. This algorithm tends to
be quite IO bound in both the read and write phases,
though because the data is read many more times than
it is written the read performance is more important.
GAMESS includes timing information for many of the
individual steps, but due to the overlap of I/O and com-
putation the rates computed from these timings repre-
sent a lower bound on the I/O performance.

While GAMESS normally uses the standard FOR-
TRAN I/O interfaces we also wanted to be able to test
the native PVFS2 system. Thus, a shim layer was de-
veloped that passes I/O from GAMESS to the native
PVFS2 interfaces. The shim layer also allows us to
tune the I/O buffer size passed to the file system or
PVFS2 library as well the PVFS2 stripe size.

For our test runs two sets of input were chosen. The
first is the insecticide rotenone, C23O6H22, with a 6-
31G* basis set or 479 atomic orbitals (AOs). This run
results in a 17.1 GB integral file. This file size will fit
in the file cache when run with 6 data servers and thus
allows us to evaluate the performance of the network
and PVFS2 software separately from the disk perfor-
mance. The second test case uses the anticancer drug
taxol, C47O14N1H51, with a 6-31G* basis set or 1032
AOs. This produces a 120GB file that is clearly sev-
eral times our aggregate file cache size. Using these
test cases we hope to validate the NetPIPE results by
relating real application performance to specific points
on the NetPIPE curves.

5 Solution

Our solution to the problem combines InfiniBand
network attached storage, the PVFS2 file system, and
the GAMESS computational chemistry application.
By building a system with these components with
many more disks than processors we can support I/O
rates to a single node exceeding 10 Gigabits. Deliver-
ing this I/O rate in turn allows for building a system
that can support conventional - secondary storage for
scratch space - types of algorithms without locally at-
tached disks and their accompanying problems.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 10000 100000 1e+06 1e+07

B
a

n
d

w
id

th
 i
n

 M
b

p
s

Message Size in Bytes

DDR mthca native IB
eHCA native IB

Figure 2. Native OpenIB verbs performance

6 Experiments

We began our experiments by establishing the base
level of performance for the network and the disk sub-
systems on the Opteron based storage servers. This
was done using NetPIPE to measure the native OpenIB
verbs performance on the IBM eHCAs and on the
Opteron based storage servers. Those results are plot-
ted in Figure 2. The curve for the Mellanox DDR NIC
in the Opteron systems appears much as we would ex-
pect with a respectable peak performance of around
11 Gbps. However, the curve for the IBM eHCA is
much less impressive. At small message sizes on reg-
ular block sizes the performance is quite good as a
result of its excellent message latency, but the peak
performance is only slightly over 6 Gbps. After dis-
cussing this with the developers the reason is that this
adapter is really designed for many simultaneous mes-
sage streams. As such it has multiple DMA engines
on the card, but a single message stream can use only
a single DMA engine which is limited to about 6 Gbps.
While this result appears quite bad, it turns out not to
be a serious issue for PVFS2 when we are normally
talking to multiple storage servers. Since PVFS2 must
use at least one message stream per storage server the
multiple DMA engines in the eHCA engine are used
in parallel to good effect as we shall see later.

Next we examined the local disk performance on
our Opteron storage servers. We found a peak per-
formance of about 3.5 Gbps (435MB/sec) per server.
This is somewhat less than we had hoped for, but still
a good rate in aggregate as the 6 servers would be able
to provide 2.6 GB/sec of total I/O bandwidth.

4

Base Disk Performance

Directly testing of the I/O performance on the
Opteron storage servers indicated a peak read
performance of 435 MB/sec. measured using
NetPIPE (a single stream). Much higher
bandwidth can be obtained with Linux AIO
approaching 600 MB/sec.

13

VFS Results from Cache

Peak read
performance of
greater than 500
MB/sec

GAMESS tests on
small test case
show similar peak
numbers.

14

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

VFS Write 6-node
VFS Read 6-node
VFS Write 4-node
VFS Read 4-node

Figure 3. PVFS2 VFS performance

The first PVFS2 tests examined the VFS perfor-
mance. These results are plotted in Figure 3 showing
the performance for 4 and 6 storage server configura-
tions. These tests allow the servers to utilize file cache
so they represent a test of the network and software
performance. For validation the smaller GAMESS
computation averaged 181 MB/s over the total run
time of the job on 1 CPU and 336 MB/s on 4 CPUs.
If we subtract off the CPU time and recompute the I/O
rate we get of 447 MB/sec (3.5 Gbps) on one CPU and
473 MB/sec (3.75 Gbps) on four CPU run, both within
a single node. This gives fairly good agreement with
the peak NetPIPE numbers.

Figure 4 illustrates the same runs using the native
PVFS2 interfaces. These show a doubling of peak per-
formance, but not until a fairly large message size. Us-
ing GAMESS as a comparison is more difficult in this
case because we can not easily separate out the CPU
time used by the computation and the CPU time used
for polling on I/O. However, we can compare total
wall times which went from 1344 seconds over VFS
to 850 seconds native. The minimum performance is
288 MB/sec (2.3 Gbps), but in comparison with Net-
PIPE and previous GAMESS results we estimate that
it is closer to the NetPIPE peak performance around
1.1 GB/sec (9 Gbps).

Figure 5 shows NetPIPE running in cache invalidate
mode. Cache invalidate mode causes seeks inside the
file at every iteration of a send/recv call. This is shown
most effectively when we begin seeking outside of the
data that remains in system cache on any given data
node, which occurs beyond 2MBs for the number of
iterations done in this test. This type of test shows how

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read 6-node
libpvfs Read 4-node
libpvfs Read 2-node

Figure 4. PVFS2 native performance

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08
B

a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read with Invalidate
libpvfs Write with Invalidate

Figure 5. NetPIPE in cache invalidate mode

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read from cache
libpvfs Read from disk

Figure 6. Comparison of read performance
with and without cache invalidate

5

Native Results from Cache

Peak read
performance of
greater than 1 GB/
sec

GAMESS
performance is also
nearly double the
VFS result.

15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10000 100000 1e+06 1e+07 1e+08

B
a

n
d

w
id

th
 i
n

 M
b

p
s

Message Size in Bytes

VFS Write 6-node
VFS Read 6-node
VFS Write 4-node
VFS Read 4-node

Figure 3. PVFS2 VFS performance

The first PVFS2 tests examined the VFS perfor-
mance. These results are plotted in Figure 3 showing
the performance for 4 and 6 storage server configura-
tions. These tests allow the servers to utilize file cache
so they represent a test of the network and software
performance. For validation the smaller GAMESS
computation averaged 181 MB/s over the total run
time of the job on 1 CPU and 336 MB/s on 4 CPUs.
If we subtract off the CPU time and recompute the I/O
rate we get of 447 MB/sec (3.5 Gbps) on one CPU and
473 MB/sec (3.75 Gbps) on four CPU run, both within
a single node. This gives fairly good agreement with
the peak NetPIPE numbers.

Figure 4 illustrates the same runs using the native
PVFS2 interfaces. These show a doubling of peak per-
formance, but not until a fairly large message size. Us-
ing GAMESS as a comparison is more difficult in this
case because we can not easily separate out the CPU
time used by the computation and the CPU time used
for polling on I/O. However, we can compare total
wall times which went from 1344 seconds over VFS
to 850 seconds native. The minimum performance is
288 MB/sec (2.3 Gbps), but in comparison with Net-
PIPE and previous GAMESS results we estimate that
it is closer to the NetPIPE peak performance around
1.1 GB/sec (9 Gbps).

Figure 5 shows NetPIPE running in cache invalidate
mode. Cache invalidate mode causes seeks inside the
file at every iteration of a send/recv call. This is shown
most effectively when we begin seeking outside of the
data that remains in system cache on any given data
node, which occurs beyond 2MBs for the number of
iterations done in this test. This type of test shows how

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a

n
d

w
id

th
 i
n

 M
b

p
s

Message Size in Bytes

libpvfs Read 6-node
libpvfs Read 4-node
libpvfs Read 2-node

Figure 4. PVFS2 native performance

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a

n
d

w
id

th
 i
n

 M
b

p
s

Message Size in Bytes

libpvfs Read with Invalidate
libpvfs Write with Invalidate

Figure 5. NetPIPE in cache invalidate mode

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a

n
d

w
id

th
 i
n

 M
b

p
s

Message Size in Bytes

libpvfs Read from cache
libpvfs Read from disk

Figure 6. Comparison of read performance
with and without cache invalidate

5

Results from Disk

Write performance
all the way to disk
is significantly
reduced.

Read performance
seems barely
effected.

16

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

VFS Write 6-node
VFS Read 6-node
VFS Write 4-node
VFS Read 4-node

Figure 3. PVFS2 VFS performance

The first PVFS2 tests examined the VFS perfor-
mance. These results are plotted in Figure 3 showing
the performance for 4 and 6 storage server configura-
tions. These tests allow the servers to utilize file cache
so they represent a test of the network and software
performance. For validation the smaller GAMESS
computation averaged 181 MB/s over the total run
time of the job on 1 CPU and 336 MB/s on 4 CPUs.
If we subtract off the CPU time and recompute the I/O
rate we get of 447 MB/sec (3.5 Gbps) on one CPU and
473 MB/sec (3.75 Gbps) on four CPU run, both within
a single node. This gives fairly good agreement with
the peak NetPIPE numbers.

Figure 4 illustrates the same runs using the native
PVFS2 interfaces. These show a doubling of peak per-
formance, but not until a fairly large message size. Us-
ing GAMESS as a comparison is more difficult in this
case because we can not easily separate out the CPU
time used by the computation and the CPU time used
for polling on I/O. However, we can compare total
wall times which went from 1344 seconds over VFS
to 850 seconds native. The minimum performance is
288 MB/sec (2.3 Gbps), but in comparison with Net-
PIPE and previous GAMESS results we estimate that
it is closer to the NetPIPE peak performance around
1.1 GB/sec (9 Gbps).

Figure 5 shows NetPIPE running in cache invalidate
mode. Cache invalidate mode causes seeks inside the
file at every iteration of a send/recv call. This is shown
most effectively when we begin seeking outside of the
data that remains in system cache on any given data
node, which occurs beyond 2MBs for the number of
iterations done in this test. This type of test shows how

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read 6-node
libpvfs Read 4-node
libpvfs Read 2-node

Figure 4. PVFS2 native performance

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read with Invalidate
libpvfs Write with Invalidate

Figure 5. NetPIPE in cache invalidate mode

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read from cache
libpvfs Read from disk

Figure 6. Comparison of read performance
with and without cache invalidate

5

Results from Disk

Indeed read
performance is
only slightly
reduced with some
additional latency.

17

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

VFS Write 6-node
VFS Read 6-node
VFS Write 4-node
VFS Read 4-node

Figure 3. PVFS2 VFS performance

The first PVFS2 tests examined the VFS perfor-
mance. These results are plotted in Figure 3 showing
the performance for 4 and 6 storage server configura-
tions. These tests allow the servers to utilize file cache
so they represent a test of the network and software
performance. For validation the smaller GAMESS
computation averaged 181 MB/s over the total run
time of the job on 1 CPU and 336 MB/s on 4 CPUs.
If we subtract off the CPU time and recompute the I/O
rate we get of 447 MB/sec (3.5 Gbps) on one CPU and
473 MB/sec (3.75 Gbps) on four CPU run, both within
a single node. This gives fairly good agreement with
the peak NetPIPE numbers.

Figure 4 illustrates the same runs using the native
PVFS2 interfaces. These show a doubling of peak per-
formance, but not until a fairly large message size. Us-
ing GAMESS as a comparison is more difficult in this
case because we can not easily separate out the CPU
time used by the computation and the CPU time used
for polling on I/O. However, we can compare total
wall times which went from 1344 seconds over VFS
to 850 seconds native. The minimum performance is
288 MB/sec (2.3 Gbps), but in comparison with Net-
PIPE and previous GAMESS results we estimate that
it is closer to the NetPIPE peak performance around
1.1 GB/sec (9 Gbps).

Figure 5 shows NetPIPE running in cache invalidate
mode. Cache invalidate mode causes seeks inside the
file at every iteration of a send/recv call. This is shown
most effectively when we begin seeking outside of the
data that remains in system cache on any given data
node, which occurs beyond 2MBs for the number of
iterations done in this test. This type of test shows how

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read 6-node
libpvfs Read 4-node
libpvfs Read 2-node

Figure 4. PVFS2 native performance

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read with Invalidate
libpvfs Write with Invalidate

Figure 5. NetPIPE in cache invalidate mode

 0

 2000

 4000

 6000

 8000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

B
a
n
d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

libpvfs Read from cache
libpvfs Read from disk

Figure 6. Comparison of read performance
with and without cache invalidate

5

GAMESS Large Run Performance

Single process
performance is 228
MB/sec over VFS,
375 MB/sec native.

4 processes on 4
nodes gives 900
MB/sec in native
mode!

18

a GAMESS job would access storage while reading an
integral of potentially several hundred gigabytes.

The lines in Figure 5 help show the effects of
caching in various places between the client and the
disk subsystem. An important thing to note is that as
the message size increases, the read bandwidth is still
increasing and has yet to level off. This may imply that
we have not reached a bandwidth limitation imposed
by the disk subsystem for reads. We were unable to
examine this due to limitations with registering mem-
ory on the eHCAs. We do however know that we have
yet to reach the limits measured for the disk subsys-
tems.

As the test show, the effects of caching tail off when
the test file size becomes large. The test file used
to produce this graph was over 400GB which helped
eliminate caching effects beyond 50-75MB message
sizes. The write line shows our expected bandwidth
directly to disk of about 3.5Gbit/sec with little to no
caching effects due to the fact that the test file is
many times the aggregate file cache size of the stor-
age servers.

Figure 6 compares the measured NetPIPE read per-
formance with and without cache invalidate. Thus, this
is a comparison of PVFS2 performance from storage
server file cache versus all the way to the disk. Clearly
the performance from disk is quite close to the perfor-
mance from cache with the addition of a little higher
latency. This indicates that our peak performance is
being limited more by the network and PVFS2 proto-
cols than by the performance of the disk subsystems.

Figure 7 illustrates the sustained aggregate read per-
formance as reported by vmstat on the storage servers.
As such it is more reliable than the results for the
smaller test case. Tests are included for runs with the
VFS interface for both 1 and 4 processes per node
and for the native interface with 1 process per node.
Unfortunately bugs in the eHCA driver prevented us
from running more than one native process per node.
This restriction does not effect the VFS layer because
PVFS2 currently uses a single client process to service
the client VFS layer. Thus multiple processes per node
can be used to good effect with the VFS layer. The first
item of note is that the single CPU read performance is
about 220 MB/sec (1.76 Gbps) through the VFS layer.
Through the native interface we achieve 375 MB/sec
(3 Gbps), which is almost as fast as 4 CPUs running

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8

Node Count

R
e
a
d

 R
a
te

 (
M

B
/

s
e
c
)

VFS 1CPU/Node

VFS 4 CPU/Node

Native 1 CPU/Node

Figure 7. Scaling of GAMESS taxol Computa-
tion

through through the VFS interface. The scaling for
the VFS interface seems to top out lower than we ex-
pect. However, the native interface appears to scale
much better and achieves 900 MB/sec (7.2 Gbps) with
1 process on each of four nodes.

6.1 Conclusions

We have demonstrated through various tests that
PVFS2 running over the OpenIB stack can be used to
deliver high-bandwidth to secondary storage to an in-
dividual node. The VFS layer delivers 220 MB/sec and
the native layer delivers 375 MB/sec from disk to a sin-
gle process. These are quite respectable I/O rates and
are well in excess of our 150 MB/sec target. However,
we recognise that there is still room for improvement.
Tests on files that fit within the file cache of the storage
servers indicate peak VFS performance of 550 MB/sec
and peak native performance of over 1 GB/sec both to
a single process.

We believe that there are several opportunites for
further performance improvements. These include
multithreading the VFS client and server processes,
the use of read ahead in the server, and the use of AIO
in the server.

7 Judging Criteria

The focus of our effort is on obtaining large I/O
bandwidths to a single node and/or a single process.

6

Conclusions

PVFS2 over OpenIB can be used to deliver
I/O to a single node and a single process at
rates that significantly exceed the
performance of locally attached disk
subsystems typically used in clusters.

This setup offers the possibility of using
inexpensive storage servers to provide very
fast I/O to high-end compute servers.

19

Acknowledgments

Funding:

U.S. Department of Energy

IBM

Brad Benton and Chet Mehta at IBM

Pete Wyckoff at OSC

Rob Latham, Sam Lang and Rob Ross on
the PVFS2 development team.

20

Questions

21

?

